Effects of synthetic cohesin-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis
نویسندگان
چکیده
BACKGROUND The microbial synthesis of fuels, commodity chemicals, and bioactive compounds necessitates the assemblage of multiple enzyme activities to carry out sequential chemical reactions, often via substrate channeling by means of multi-domain or multi-enzyme complexes. Engineering the controlled incorporation of enzymes in recombinant protein complexes is therefore of interest. The cellulosome of Clostridium thermocellum is an extracellular enzyme complex that efficiently hydrolyzes crystalline cellulose. Enzymes interact with protein scaffolds via type 1 dockerin/cohesin interactions, while scaffolds in turn bind surface anchor proteins by means of type 2 dockerin/cohesin interactions, which demonstrate a different binding specificity than their type 1 counterparts. Recombinant chimeric scaffold proteins containing cohesins of different specificity allow binding of multiple enzymes to specific sites within an engineered complex. RESULTS We report the successful display of engineered chimeric scaffold proteins containing both type 1 and type 2 cohesins on the surface of Lactococcus lactis cells. The chimeric scaffold proteins were able to form complexes with the Escherichia coli β-glucuronidase fused to either type 1 or type 2 dockerin, and differences in binding efficiencies were correlated with scaffold architecture. We used E. coli β-galactosidase, also fused to type 1 or type 2 dockerins, to demonstrate the targeted incorporation of two enzymes into the complexes. The simultaneous binding of enzyme pairs each containing a different dockerin resulted in bi-enzymatic complexes tethered to the cell surface. The sequential binding of the two enzymes yielded insights into parameters affecting assembly of the complex such as protein size and position within the scaffold. CONCLUSIONS The spatial organization of enzymes into complexes is an important strategy for increasing the efficiency of biochemical pathways. In this study, chimeric protein scaffolds consisting of type 1 and type 2 cohesins anchored on the surface of L. lactis allowed for the controlled positioning of dockerin-fused reporter enzymes onto the scaffolds. By binding single enzymes or enzyme pairs to the scaffolds, our data also suggest that the size and relative positions of enzymes can affect the catalytic profiles of the resulting complexes. These insights will be of great value as we engineer more advanced scaffold-guided protein complexes to optimize biochemical pathways.
منابع مشابه
Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis
BACKGROUND The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin...
متن کاملSelf-assembled amyloid-like oligomeric-cohesin Scaffoldin for augmented protein display on the saccharomyces cerevisiae cell surface.
In this study, a molecular self-assembly strategy to develop a novel protein scaffold for amplifying the extent and variety of proteins displayed on the surface of Saccharomyces cerevisiae is presented. The cellulosomal scaffolding protein cohesin and its upstream hydrophilic domain (HD) were genetically fused with the yeast Ure2p N-terminal fibrillogenic domain consisting of residues 1 to 80 (...
متن کاملCloning of EprA1 gene of Aeromonas hydrophila in Lactococcus lactis
Bacterial-based systems as live vectors for the delivery of heterologous antigens offer a number of advantages as vaccination strategies. Developments in genetic engineering have given Gram-positive lacticacid bacteria (LAB) the advantage of being used as a host expression system for antigen delivery to inducethe immune response. A fragment containing the full length of the “eprA1” ...
متن کاملFunctional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum.
Cellulosomes, synthesized by anaerobic microorganisms such as Clostridium thermocellum, are remarkably complex nanomachines that efficiently degrade plant cell wall polysaccharides. Cellulosome assembly results from the interaction of type I dockerin domains, present on the catalytic subunits, and the cohesin domains of a large non-catalytic integrating protein that acts as a molecular scaffold...
متن کاملReceptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis.
Adherence of F18 fimbrial Escherichia coli to porcine intestinal epithelial cells is mediated by the adhesin (FedF) of F18 fimbriae. In a previous study, we demonstrated the specificity of the amino acid residues between 60 and 109 as the receptor binding domain of FedF. In this study, different expression, secretion, and anchoring systems for the receptor binding domain of the FedF adhesin in ...
متن کامل